A Wavelet Neural Network Based Non-linear Model Predictive Controller for a Multi-variable Coupled Tank System
نویسندگان
چکیده
In this paper, a novel real time non-linear model predictive controller (NMPC) for a multi-variable coupled tank system (CTS) is designed. CTSs are highly non-linear and can be found in many industrial process applications. The involvement of multi-input multi-output (MIMO) system makes the design of an effective controller a challenging task. MIMO systems have inherent couplings, interactions in-between the process input-output variables and generally have an unknown structure. The aim of this paper is to design, simulate, and implement a novel real time constrained NMPC for a multi-variable CTS with the aid of intelligent system techniques. There are two major formidable challenges hindering the success of the implementation of a NMPC strategy in the MIMO case. The first is the difficulty of obtaining a good non-linear model by training a non-convex complex network to avoid being trapped in a local minimum solution. The second is the online real time optimisation (RTO) of the manipulated variable at every sampling time. A novel wavelet neural network (WNN) with high predicting precision and time-frequency localisation characteristic was selected for an MIMO model and a fast stochastic wavelet gradient algorithm was used for initial training of the network. Furthermore, a genetic algorithm was used to obtain the optimised parameters of the WNN as well as the RTO during the NMPC strategy. The proposed strategy performed well in both simulation and real time on an MIMO CTS. The results indicated that WNN provided better trajectory regulation with less mean-squared-error and average control energy compared to an artificial neural network. It is also shown that the WNN is more robust during abnormal operating conditions.
منابع مشابه
A novel real-time non-linear wavelet-based model predictive controller for a coupled tank system
This article presents the design, simulation and real-time implementation of a constrained non-linear model predictive controller for a coupled tank system. A novel wavelet-based function neural network model and a genetic algorithm online non-linear real-time optimisation approach were used in the non-linear model predictive controller strategy. A coupled tank system, which resembles operation...
متن کاملAdaptive Predictive Controllers Using a Growing and Pruning RBF Neural Network
An adaptive version of growing and pruning RBF neural network has been used to predict the system output and implement Linear Model-Based Predictive Controller (LMPC) and Non-linear Model-based Predictive Controller (NMPC) strategies. A radial-basis neural network with growing and pruning capabilities is introduced to carry out on-line model identification.An Unscented Kal...
متن کاملRejection of the Feed-Flow Disturbances in a Multi-Component Distillation Column Using a Multiple Neural Network Model-Predictive Controller
This article deals with the issues associated with developing a new design methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination of multiple neural networks is selected and used to model a nonlinear multi-input multi-output (MIMO) process with time delays. An optimization procedure for a neural MPC algorithm based on this model is then developed. T...
متن کاملNeural Network Control
This thesis addresses two neural network based control systems. The first is a neural network based predictive controller. System identification and controller design are discussed. The second is a direct neural network controller. Parameter choice and training methods are discussed. Both controllers are tested on two different plants. Problems regarding implementations are discussed. First the...
متن کاملStudies with a Generalized Neuron Based PSS on a Multi-Machine Power System
An artificial neural network can be used as an intelligent controller to control non-linear, dynamic system through learning. It can easily accommodate non-linearities and time dependencies. Most common multi-layer feed-forward neural networks have the drawbacks of large number of neurons and hidden layers required to deal with complex problems and require large training time. To overcome these...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014